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Parameters vs. Hyperparameters

Parameters in DNN are:
• weights, biases and other variables of the model that are updated and adjusted 

during the training process according to the chosen training algorithm.

Hyperparameters in DNN:
• are all variables and parameters of the model that are not adjusted by the 

training algorithm but by the DNN developer;

• are all parameters that can be changed independently of the way how the 
training algorithm works;

• can be adjusted by extra supporting algorithms like genetic or evolutional ones;

• number or layers, number of neurons in hidden layers,

• activation functions and types of used layers , and weights initialization

• learning rate, regularization and optimization parameters,

• augmenting and normalizing training and testing (dev) data,

• dropout and other optimization techniques,

• avoiding vanishing and exploding gradients.
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Distribution of Training and Testing Data

Training and testing data should be of the same distribution(s):
If we use, e.g. images from different sources to train Convolutional Neural 
Networks, we must take care about the suitable division of the data from each 
distribution to the training and testing data. On the other hand, we don’t be able 
to adjust the model and achieve high performance and generalization property.

During the training process, we usually use:
Training examples (training set) for adjusting the model

Verifying examples (def set) for checking the training progress

Test examples for checking generalization of the trained model

Sometimes, we don’t use test examples, only checking the model during its
adaptation and adjustment process.
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Bias and Variance of the Model

When adapting the parameters of the model we can:
• Not enough model the training dataset (underfitting)

• Adjust the model too much, not achieving good generalization (overfitting)

• Fit the dataset adequately (right fitting)

Dependently on high bias 
and/or high variance, we can 
try to change/adjust different 
hyperparameters in the model 
to lower them appropriately 
and achieve better performance 
of the final model.  
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Tackling with high bias and variance

When we achieve high bias (low training data performance), try to:

• Create/use bigger network structure,

• Train the model longer,

• Use different neural network architecture (e.g. CNN, RNN), different layers,

• Change training rate, change activation functions, optimization parameters,

• Use an appropriate loss function not to stuck in local minima,

• …

When we achieve high variance (low dev data performance), try to:

• Use more training data with better distribution over the input and output data 
space.

• Try to use regularization (like dropout),

• Use different neural network architecture (e.g. CNN, RNN), different layers,

• Check the data distribution between training and dev sets,

• …
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Human Level Performance

Human Level Performance:
• Is the classification/prediction error achieved by the committee of highly 

expertise humans (e.g. surgeons, psychologists, teachers, engineers).

• Is treated as a high bound and goal of training the model.

• Can be sometimes exceeded by machines and retrospectively checked by 
human experts.

http://home.agh.edu.pl/~horzyk/index-eng.php


Regularization

Regularization means the addition of the regularization factor 

and parameter 𝝀 to the loss function:
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where we usually use Frobenius norm:
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This kind of regularization is often called the “weight decay”.
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Regularization prevents overfitting

Regularization penalizes the weight matrices to be too large 
thanks to this extra regularization factor:
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because we want to minimize the above cost function during the training!
So the network will compose of nearly linear (not very complex) functions.

If the weights are small the output values of the activation functions of the 
neurons will also be not exceeding the middle, almost linear part of the 
activation function, so in case the activation function is nearly linear: 
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Dropout Regularization

Dropout regularization switches off some neurons with a given probability, 
not using them temporarily during propagation and backpropagation steps forcing 
the network to learn the same by various combinations of neurons in the network:

Implementing dropout regularization 
the input stimuli of neurons are weaken 
according to the number of the shut off 
neurons (i.e. the chosen probability of 
dropout on average, e.g. p = 0.25), so 
the stimulation must be higher to achieve 
the right stimulation of the neurons, e.g. 
the classification neurons in the last layer.

Dropout can be 
selectively used only 
in a selected subset 
of layers.

Dropout is usually 
used to layers with 
a big amount of 
weights and neurons.
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Data Augmentation

We can also augment training dataset to avoid the known limitations of the neural 
structures and learning algorithms to deal with rotated, scaled and moved patterns 
in the input data space. Therefore, we rotate, scale, and move pattern and thus 
augment the training data space by these variations of training data. This 
techniques usually allows to achieve better training results:

• Rotate

• Scale

• Cut (different parts of images)

• Move
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Early Stopping

We can also use “early stopping” of the training routine before 
the error on the dev set starts to grow:
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Normalizing Training Sets

Normalization:
• Makes data of different attributes (different ranges) comparable and not 

favourited or neglected during the training process. Therefore, we scale all 
training and testing (dev) data inside the same normalized ranges.

• We also must not forget to scale testing (dev) data using the same 𝝁 and 𝝈𝟐. 
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• The training process is faster and better when training data are normalized!
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Vanishing and Exploding Gradients

In deep structures, computed gradients in previous layers are:
• smaller and smaller (vanish) when a values lower than 1 are multiplied/squared

• greater and grater (explode) when a values bigger than 1 are multiplied /squared

because today we use deep neural networks that consist of tens of layers!
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Weights Initialization

We initialize weights with small values:
• to put the values of activation functions in the range of the largest variance, 

which speed up the training process.

• taking into account the number neurons 𝒏 𝒍−𝟏 of the previous layer, 

e.g. for tanh: 
𝟏

𝒏 𝒍−𝟏 (popular Xavier initialization) or 
𝟐

𝒏 𝒍−𝟏 +𝒏 𝒍 ,

multiplying the random numbers from the range of 0 and 1 by such a factor.
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Let’s start to change hyperparameters!
✓ Improving performance of the training 

✓ Speeding up the training process

✓ Not stacking in local minima

✓ Using less computational resources to get the model
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